68 research outputs found

    Edge-disjoint spanning trees and eigenvalues of regular graphs

    Get PDF
    Partially answering a question of Paul Seymour, we obtain a sufficient eigenvalue condition for the existence of kk edge-disjoint spanning trees in a regular graph, when k{2,3}k\in \{2,3\}. More precisely, we show that if the second largest eigenvalue of a dd-regular graph GG is less than d2k1d+1d-\frac{2k-1}{d+1}, then GG contains at least kk edge-disjoint spanning trees, when k{2,3}k\in \{2,3\}. We construct examples of graphs that show our bounds are essentially best possible. We conjecture that the above statement is true for any k<d/2k<d/2.Comment: 4 figure

    The spectrum and toughness of regular graphs

    Full text link
    In 1995, Brouwer proved that the toughness of a connected kk-regular graph GG is at least k/λ2k/\lambda-2, where λ\lambda is the maximum absolute value of the non-trivial eigenvalues of GG. Brouwer conjectured that one can improve this lower bound to k/λ1k/\lambda-1 and that many graphs (especially graphs attaining equality in the Hoffman ratio bound for the independence number) have toughness equal to k/λk/\lambda. In this paper, we improve Brouwer's spectral bound when the toughness is small and we determine the exact value of the toughness for many strongly regular graphs attaining equality in the Hoffman ratio bound such as Lattice graphs, Triangular graphs, complements of Triangular graphs and complements of point-graphs of generalized quadrangles. For all these graphs with the exception of the Petersen graph, we confirm Brouwer's intuition by showing that the toughness equals k/(λmin)k/(-\lambda_{min}), where λmin\lambda_{min} is the smallest eigenvalue of the adjacency matrix of the graph.Comment: 15 pages, 1 figure, accepted to Discrete Applied Mathematics, special issue dedicated to the "Applications of Graph Spectra in Computer Science" Conference, Centre de Recerca Matematica (CRM), Bellaterra, Barcelona, June 16-20, 201

    Mixing Rates of Random Walks with Little Backtracking

    Full text link
    Many regular graphs admit a natural partition of their edge set into cliques of the same order such that each vertex is contained in the same number of cliques. In this paper, we study the mixing rate of certain random walks on such graphs and we generalize previous results of Alon, Benjamini, Lubetzky and Sodin regarding the mixing rates of non-backtracking random walks on regular graphs.Comment: 31 pages; to appear in the CRM Proceedings Series, published by the American Mathematical Society as part of the Contemporary Mathematics Serie

    On the Spectrum of Wenger Graphs

    Full text link
    Let q=peq=p^e, where pp is a prime and e1e\geq 1 is an integer. For m1m\geq 1, let PP and LL be two copies of the (m+1)(m+1)-dimensional vector spaces over the finite field Fq\mathbb{F}_q. Consider the bipartite graph Wm(q)W_m(q) with partite sets PP and LL defined as follows: a point (p)=(p1,p2,,pm+1)P(p)=(p_1,p_2,\ldots,p_{m+1})\in P is adjacent to a line [l]=[l1,l2,,lm+1]L[l]=[l_1,l_2,\ldots,l_{m+1}]\in L if and only if the following mm equalities hold: li+1+pi+1=lip1l_{i+1} + p_{i+1}=l_{i}p_1 for i=1,,mi=1,\ldots, m. We call the graphs Wm(q)W_m(q) Wenger graphs. In this paper, we determine all distinct eigenvalues of the adjacency matrix of Wm(q)W_m(q) and their multiplicities. We also survey results on Wenger graphs.Comment: 9 pages; accepted for publication to J. Combin. Theory, Series

    A graph partition problem

    Full text link
    Given a graph GG on nn vertices, for which mm is it possible to partition the edge set of the mm-fold complete graph mKnmK_n into copies of GG? We show that there is an integer m0m_0, which we call the \emph{partition modulus of GG}, such that the set M(G)M(G) of values of mm for which such a partition exists consists of all but finitely many multiples of m0m_0. Trivial divisibility conditions derived from GG give an integer m1m_1 which divides m0m_0; we call the quotient m0/m1m_0/m_1 the \emph{partition index of GG}. It seems that most graphs GG have partition index equal to 11, but we give two infinite families of graphs for which this is not true. We also compute M(G)M(G) for various graphs, and outline some connections between our problem and the existence of designs of various types

    Eigenvalues and edge-connectivity of regular graphs

    Get PDF
    AbstractIn this paper, we show that if the second largest eigenvalue of a d-regular graph is less than d-2(k-1)d+1, then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3-(d-3)x2-(3d-2)x-2=0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if the second largest eigenvalue of G is less than d-3+(d+3)2-162, then G is 3-edge-connected
    corecore